Ambient Particulate Matter Pollution — Capstone Appendix

Flowchart

Input data and modeling strategy

Exposure

Definition
Exposure to ambient air pollution is defined as the population-weighted annual average mass concentration of particles with an aerodynamic diameter less than 2.5 micrometers (PM$_{2.5}$) in a cubic meter of air. This measurement is reported in µg/m3.

Input Data
The data used to estimate exposure to ambient air pollution comes from multiple sources, including satellite observations of aerosols in the atmosphere, ground measurements, chemical transport model simulations, population estimates, and land-use data. Table 1 summarizes exposure input data.

Table 1: Exposure Input Data

<table>
<thead>
<tr>
<th>Input data</th>
<th>Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source count (total)</td>
<td>663</td>
</tr>
<tr>
<td>Number of countries with data</td>
<td>114</td>
</tr>
</tbody>
</table>

The following details the updates in methodology and input data used in GBD 2019.

PM$_{2.5}$ ground measurement database
Ground measurements used for GBD 2019 include updated measurements from sites included in 2017 and additional measurements from new locations. New, and up-to-date data (mainly from the USA, Canada, EU, Bangladesh, China and US embassies and consulates), were added to the data from the 2018 update of the WHO Global Ambient Air Quality Database used in GBD 2017. The updated data included measurements of concentrations of PM$_{10}$ and PM$_{2.5}$ from 10,408 ground monitors from 116 countries from 2010 to 2017. The majority of measurements were recorded in
2016 and 2017 (as there is a lag in reporting measurements, little data from 2018 or newer were available). Annual averages were excluded if they were based on less than 75% coverage within a year. If information on coverage was not available then data were included unless there were already sufficient data within the same country (monitor density greater than 0.1).

For locations measuring only PM$_{10}$, PM$_{2.5}$ measurements were estimated from PM$_{10}$. This was performed using a hierarchy of conversion factors (PM$_{2.5}$/PM$_{10}$ ratios): (i) for any location a ‘local’ conversion factor was used, constructed as the ratio of the average measurements (of PM$_{2.5}$ and PM$_{10}$) from within 50km of the location of the PM$_{10}$ measurement, and within the same country, if such measurements were available (ii) if there was not sufficient local information to construct a conversion factor then a country-wide conversion factor was used; and (iii) if there was no appropriate information within a country then a regional factor was used. In each case, to avoid the possible effects of outliers in the measured data (both PM$_{2.5}$ and PM$_{10}$), extreme values of the ratios were excluded (defined as being greater/lesser than the 95 and 5% quantiles of the empirical distributions of conversion factors). As with GBD 2013, 2015, 2016 and 2017 databases, in addition to values of PM$_{2.5}$ and whether they were direct measurement or converted from PM$_{10}$, the database also included additional information, where available, related to the ground measurements such as monitor geo coordinates and monitor site type.

Satellite-based estimates

The global geophysical PM$_{2.5}$ estimates for the years 2000-2017 are from Hammer Version V4.GL.03.NoGWR used at 0.1°×0.1° resolution (~11 x 11 km resolution at the equator). The method is based on the algorithms of van Donkelaar et al. (2016) as used in GBD2017, with updated satellite retrievals, chemical transport modeling, and ground-based monitoring. The algorithm uses aerosol optical depth (AOD) from several updated satellite products (MAIAC, MODIS C6.1, and MISR v23), including finer resolution, increased global coverage, and improved long-term stability. Ground-based observations from a global sunphotometer network (AERONET version 3) are used to combine different AOD information sources. This is the first time that data from MAIAC at 1 km resolution was used to estimate PM$_{2.5}$ at the global scale. The GEOS-Chem chemical transport model with updated algorithms was used for geophysical relationships between surface PM$_{2.5}$ and AOD. Updates to the GEOS-Chem simulation included improved representation of mineral dust and secondary organic aerosol, as well as updated emission inventories. The resultant geophysical PM$_{2.5}$ estimates are highly consistent with ground monitors worldwide ($R^2=0.81$, slope = 1.03, $n = 2541$).

Population data

A comprehensive set of population data, adjusted to match UN2015 Population Prospectus, on a high-resolution grid was obtained from the Gridded Population of the World (GPW) database. Estimates for 2000, 2005, 2010, 2015 and 2020 were available from GPW version 4, with estimates for 1990 and 1995 obtained from the GPW version 3. These data are provided on a 0.0083°×0.0083° resolution. Aggregation to each 0.1°×0.1° grid cell was accomplished by summing the central 12 x 12 population cells. Population estimates for 2001-2004, 2006-2009, 2011-2014 and 2016-2019 were obtained by interpolation using natural splines with knots placed at 2000, 2005, 2010, 2015 and 2020. This was performed for each grid cell.

Chemical transport model simulations

Estimates of the sum of particulate sulfate, nitrate, ammonium and organic carbon and the compositional concentrations of mineral dust simulated using the GEOS Chem chemical transport
model, and a measure combining elevation and the distance to the nearest urban land surface (as described in van Donkelaar et al. 2016² and Hammer et al. (submitted))³ were available for 2000 to 2017 for each 0.1°×0.1° grid cell.

Modelling strategy
The following is a summary of the modelling approach, known as the Data Integration Model for Air Quality (DIMAQ) used in GBD 2015, 2016, 2017 and now in GBD 2019.⁴

Before the implementation of DIMAQ (i.e. in GBD 2010 and GBD 2013), exposure estimates were obtained using a single global function to calibrate available ground measurements to a ‘fused’ estimate of PM$_{2.5}$; the mean of satellite-based estimates and those from the TM5 chemical transport model, calculated for each 0.1°×0.1° grid cell. This was recognised to represent a trade-off between accuracy and computationally efficiency when utilising all the available data sources. In particular, the GBD 2013 exposure estimates were known to underestimate ground measurements in specific locations (see discussion in Brauer et al., 2015).⁵ This underestimation was largely due to the use of a single, global, calibration function, whereas in reality the relationship between ground measurements and other variables will vary spatially.

In GBD 2015 and GBD 2016, coefficients in the calibration model were estimated for each country. Where data were insufficient within a country, information can be ‘borrowed’ from a higher aggregation (region) and if enough information is still not available from an even higher level (super-region). Individual country level estimates were therefore based on a combination of information from the country, its region and super-region. This was implemented within a Bayesian Hierarchical modelling (BHM) framework. BHMs provide an extremely useful and flexible framework in which to model complex relationships and dependencies in data. Uncertainty can also be propagated through the model allowing uncertainty arising from different components, both data sources and models, to be incorporated within estimates of uncertainty associated with the final estimates. The results of the modelling comprise a posterior distribution for each grid cell, rather than just a single point estimate, allowing a variety of summaries to be calculated. The primary outputs here are the median and 95% credible intervals for each grid cell. Based on the availability of ground measurement data, modelling and evaluation was focused on the year 2016.

The model used in GBD 2017 and GBD 2019 also included within country calibration variation.⁶ The model used for GBD2019, henceforth referred to as DIMAQ2, provides a number of substantial improvements over the initial formulation of DIMAQ. In DIMAQ, ground measurements from different years were all assumed to have been made in the primary year of interest and then regressed against values from other inputs (e.g. satellites etc.) made in that year. In the presence of changes over time therefore, and particularly in areas where no recent measurements were available, there was the possibility of mismatches between the ground measurements and other variables. In DIMAQ2, ground measurements were matched with other inputs (over time), and the (global level) coefficients were allowed to vary over time, subject to smoothing that is induced by a first-order random walk process. In addition, the manner in which spatial variation can be incorporated within the model has developed: where there is sufficient data, the calibration equations can now vary (smoothly) both within and between countries, achieved by allowing the coefficients to follow (smooth) Gaussian processes. Where there is insufficient data within a country, to produce accurate equations, as before information is borrowed from lower down the hierarchy and it is supplemented with information from the wider region.
DIMAQ2 as described above is used for all regions except for the North Africa/Middle East and Sub-Saharan super-regions, where there are insufficient data across years to allow the extra complexities of the new model to be implemented. In these super-regions a simplified version of DIMAQ2 is used in which the temporal component is dropped.

Model evaluation

Model development and comparison was performed using within- and out-of-sample assessment. In the evaluation, cross validation was performed using 25 combinations of training (80%) and validation (20%) datasets. Validation sets were obtained by taking a stratified random sample, using sampling probabilities based on the cross-tabulation of PM$_{2.5}$ categories (0-24.9, 25-49.9, 50-74.9, 75-99.9, 100+ µg/m3) and super-regions, resulting in them having the same distribution of PM$_{2.5}$ concentrations and super-regions as the overall set of sites. The following metrics were calculated for each training/evaluation set combination: for model fit - R^2 and deviance information criteria (DIC, a measure of model fit for Bayesian models); for predictive accuracy - root mean squared error (RMSE) and population weighted root mean squared error (PwRMSE).

All modelling was performed on the log-scale. The choice of which variables were included in the model was made based on their contribution to model fit and predictive ability. The following is a list variables and model structures that were included in DIMAQ.

Continuous explanatory variables:

- (SAT) Estimate of PM$_{2.5}$ (in µg/m3) from satellite remote sensing on the log-scale.
- (POP) Estimate of population for the same year as SAT on the log-scale.
- (SNAOC) Estimate of the sum of sulfate, nitrate, ammonium and organic carbon simulated using the GEOS Chem chemical transport model.
- (DST) Estimate of compositional concentrations of mineral dust simulated using the GEOS-Chem chemical transport model.
- (EDxDU) The log of the elevation difference between the elevation at the ground measurement location and the mean elevation within the GEOS Chem simulation grid cell multiplied by the inverse distance to the nearest urban land surface.

Discrete explanatory variables:

- (LOC) Binary variable indicating whether exact location of ground measurement is known.
- (TYPE) Binary variable indicating whether exact type of ground monitor is known.
- (CONV) Binary variable indicating whether ground measurement is PM$_{2.5}$ or converted from PM$_{10}$.

Interactions:

- Interactions between the binary variables and the effects of SAT.

Random Effects:

- Regional temporal (random walk) hierarchical random-effects on the intercept (in
- Regional hierarchical random-effects for the coefficient associated with SAT
- Regional hierarchical random-effects for the coefficient associated with POP
- Smoothed, spatially varying, random-effects for the intercept
- Smoothed, spatially varying, random-effects for the coefficient associated with SAT
Inference and prediction

Due to both the complexity of the models and the size of the data, notably the number of spatial predictions that are required, recently developed techniques that perform ‘approximate’ Bayesian inference based on integrated nested Laplace approximations (INLA) were used. Computation was performed using the R interface to the INLA computational engine (R-INLA). GBD 2019 also makes use of an innovation in the way that samples from the (Bayesian) model are used to represent distributions of estimated concentrations in each grid-cell. Here estimates, and distributions representing uncertainty, of concentrations for each grid are obtained by taking repeated (joint) samples from the posterior distributions of the parameters and calculating estimates based on a linear combination of those samples and the input variables.

DIMAQ2 was used to produce estimates of ambient PM$_{2.5}$ for 1990, 1995 and 2010-2019, by matching the gridded estimates with the corresponding coefficients from the calibration. As there is a lag in reporting ambient air pollution based quantities, the input variables were extrapolated (as in GBD2017), allowing estimates for 2018 and 2019 to be produced in the same way as other years and crucially, allows measures of uncertainty to be produced within the BHM framework rather than by using post-hoc approximations.

Estimates from the satellites and the GEOS-Chem chemical transport model in 2018 and 2019 were produced by extrapolating estimates from 2000-2017 using generalized additive models, on a cell-by-cell basis, except in those grid cells that saw a >100% increase between 2016 and 2017, in which case only the 2000-2016 estimates were used for extrapolating, in order to avoid unrealistic and/or unjustified extrapolation of trends. Populations estimates for 2018 and 2019 were obtained by interpolation as described above.

Theoretical minimum-risk exposure level

The TMREL was assigned a uniform distribution with lower/upper bounds given by the average of the minimum and 5th percentiles of outdoor air pollution cohort studies exposure distributions conducted in North America, with the assumption that current evidence was insufficient to precisely characterize the shape of the concentration-response function below the 5th percentile of the exposure distributions. The TMREL was defined as a uniform distribution rather than a fixed value in order to represent the uncertainty regarding the level at which the scientific evidence was consistent with adverse effects of exposure. The specific outdoor air pollution cohort studies selected for this averaging were based on the criteria that their 5th percentiles were less than that of the American Cancer Society Cancer Prevention II (CPSII) cohort’s 5th percentile of 8.2 based on Turner et al. (2016). This criterion was selected since GBD 2010 used the minimum, 5.8, and 5th percentile solely from the CPS II cohort. The resulting lower/upper bounds of the distribution for GBD 2019 were 2.4 and 5.9. This has not changed since GBD 2015.

Relative Risks and Population Attributable Fractions

We create one set of cause-specific risk curves for both household air pollution and ambient air pollution as two different sources of PM2.5. In GBD 2017, we estimated the particulate matter-attributable burden of disease based on the relation of long-term exposure to PM2.5 with Ischemic Heart Disease, stroke (ischemic and hemorrhagic), COPD, lung cancer, acute lower respiratory infection, and Type II Diabetes. In GBD 2019, we added adverse birth outcomes including low birthweight and short gestation. Because these are already risk factors (and not outcomes) in the GBD, we performed a mediation analysis, in which a proportion of the burden attributable to low birthweight and short gestation was attributed to PM2.5 pollution.
For the six non-mediated outcomes, we used results from cohort and case-control studies of ambient PM2.5 pollution, cohort studies, case-control studies, and randomized-controlled trials of household use of solid fuel for cooking, and cohort and case-control studies of secondhand smoke. For the first time in GBD 2019, we no longer use active smoking data in the risk curves.

For GBD 2019 we made several important changes to the risk functions. Previously, we have used relative risk estimates for active smoking, converting cigarettes-per-day to PM2.5 exposure in order to estimate the PM2.5 relative risk at the highest end of the PM2.5 exposure-response curve. We took this approach because the vast majority of the air pollution epidemiological studies have been performed in low pollution settings in high-income countries, preventing us from extrapolating the steep relationship at the beginning of the exposure range to locations with high exposure but no relative risk estimates such as India and China. However, with the recent publication of studies in China and other higher exposure settings and additional studies of HAP, we have been able to include more estimates at high PM2.5 levels in the model.11,12,13,14,15 Furthermore, in contrast to previous cycles of the GBD where the power function used to develop the IER required the inclusion of active smoking data to anchor the risk function, with the current use of splines and their flexibility it is easier to fit functions to the (ambient, household, and SHS) data without active smoking data. Beginning in GBD 2019, we excluded active smoking studies from the risk curves. Removal of active smoking information removes an important source of uncertainty in our earlier estimates related to differences in dose rates and other aspects of exposure between active smoking and the other PM2.5 sources, including differences in voluntary (active smoking) and involuntary (ambient and household PM2.5, second hand smoke) exposure.16,17

Additionally, in the past, we have built the curves for ischemic heart disease and stroke based on studies of mortality and used evidence from 3 studies of both mortality and incidence to scale down the mortality curves to generate estimates of incidence risk. This year we extracted incidence and mortality from all available studies and included this as a covariate in the model. There was no significant difference between estimates of incidence risk and mortality risk, so we included both types of risk estimates in the curve fitting and used the same curve for both incidence and mortality. This is what was done for all other outcomes in the past and in GBD 2019.

For cardiovascular diseases, evidence suggests that the relative risk decreases with age.18 To account for this in our model, we generate unique risk curves for every 5-year age group from 25-29 to 95+ for both ischemic heart disease and stroke. Because we do not have risk data for every unique age group we adjust each study based on the median age during follow up to generate a full adjusted dataset for every curve. We calculate the median age of follow up by taking the median (or mean) age at enrollment and adding one-half of median or mean follow-up time. If follow-up time is not available, we take 70% of total study period based on the observed ratio of follow-up time to total study period for other studies.

Once we have a median age during follow-up (a), we extrapolate each study to the full set of ages where the estimated data point for age, a_j, is calculated with the following equation and accompanying explanatory figure:

\[
\log(RR)_{a_j} = \frac{\log(RR)_a - 0}{a - 110} \times (a_j - 110)
\]
Previously we have used a fixed functional form to fit the risk curves. In GBD 2019 we used MR-BRT (described in detail elsewhere) splines to fit the risk data with a more flexible shape. While previously we built in the TMREL estimates into the model fitting, this year we have fit the curve beginning at zero exposure and incorporate the TMREL into the relative risk calculation process. This allows others to use our risk curves with whatever counterfactual level is of interest to them. Relative risk curves are available upon request.

When fitting the risk curves, we consider the published relative risk over a range of exposure data. For OAP studies, the relative risk informs the curve from the 5th to the 95th percentile of observed exposure. When this is not available in the published study, we estimate the distribution from the provided information (mean and standard deviation, mean and IQR, etc.). We scale the RR to this range.

For HAP studies we allow each study to inform the curve from the Exp\text{OAP} to Exp\text{OAP}+Exp\text{HAP} where Exp\text{OAP} is the GBD 2017 estimate of the ambient exposure level in the study location and year, and Exp\text{HAP} is the GBD 2017 estimate of the excess exposure for those who use solid fuel for cooking in the study location and year.

For SHS studies, we updated our strategy of exposure estimation in GBD 2019. For the first time, we are also accounting for outdoor exposure. Similar to the approach used for HAP, we allow each study to inform the curve from the Exp\text{OAP} to Exp\text{OAP}+Exp\text{SHS} where Exp\text{OAP} is the GBD 2017 estimate of the ambient exposure level in the study location and year, and Exp\text{SHS} an estimate of the excess exposure for those who experience secondhand smoke. This is estimated from the number of cigarettes smoked per smoker per day in a given location and year, estimated by the smoking team of GBD, and from a study in Sweden, which measured the PM2.5 exposure in homes of smokers. We divided the household PM2.5 exposure level by the average number of cigarettes smoked per smoker per day in Sweden over the study duration to estimate the SHS PM2.5 exposure per cigarette (2.31 µg/m³ (95% U.I. 1.53, 3.39)). To calculate Exp\text{SHS} we multiplied the estimated number of cigarettes per smoker per day by the average PM2.5 exposures per cigarette to generate a predicted PM2.5 exposure level.

MR-BRT risk splines

We fit splines on the datasets including studies of OAP, HAP, and SHS using the following functional form, where X and X_{CF} represent the range of exposure characterized by the effect size:

$$\log \left(\frac{MRBRT(X)}{MRBRT(X_{CF})} \right) \sim \log(\text{Published Effect Size})$$
For each of the risk-outcome pairs we tested various model settings and priors in fitting the MR-BRT splines. The final models used third order splines with two interior knots and a constraint on the right-most segment forcing the fit to be linear rather than cubic. We used an ensemble approach to knot placement, wherein 100 different models were run with randomly placed knots and then combined by weighting based on a measure of fit that penalizes excessive changes in the third derivative of the curve. Knots were free to be placed anywhere within the 5th and 95th percentile of the data, as long as a minimum width of 10% of that domain exists between them. We included shape constraints so that the risk curves were concave down and monotonically increasing, the most biologically plausible shape for the PM2.5 risk curve. On the non-linear segments, we included a Gaussian prior on the third derivative of mean 0 and variance 0.01 to prevent over-fitting; on the linear segment, a stronger prior of mean 0 and variance 10^{-6} was used to ensure that the risk curves do not continue to increase beyond the range of the data.

For Chronic Obstructive Pulmonary Disease we used a looser Gaussian prior of mean 0 and variance 10^{-4} on the linear segment of the risk function. For this outcome, we have epidemiological evidence from household air pollution that the risk continues to increase at higher levels of PM2.5.

Table 2 summarizes relative risk input data for ambient particulate matter pollution and household air pollution.

Table 2: Relative Risk Input Data

<table>
<thead>
<tr>
<th>Input data</th>
<th>Relative risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source-count (total)</td>
<td>200</td>
</tr>
<tr>
<td>Number of countries with data</td>
<td>40</td>
</tr>
</tbody>
</table>

The following table includes all ambient and household sources used in generating risk curves.

<table>
<thead>
<tr>
<th>Source</th>
<th>Citation</th>
</tr>
</thead>
</table>

Estimated by Combining Community Multiscale Air Quality Model (CMAQ) Simulations with Stationary
Nurse Cohort. Environ Int. 2016; 91: 243

Hertel O, Andersen ZJ. Long
Hansen AB, Ravnskjær L, Loft S, Andersen KK, Bräuner EV, Baastrup R, Yao C, Ketzel M, Becker T, Brandt J,
Environ Res. 2014; 134: 198

Hansen AB, Ravnskjær L, Loft S, Andersen KK, Bräuner EV, Bastrup R, Yao C, Ketzel M, Becker T, Brandt J,
Hertel O, Andersen ZJ. Long-term exposure to fine particulate matter and incidence of diabetes in the Danish

<table>
<thead>
<tr>
<th>Source</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>Hao Y, Strohsnider H, Balluz L, Qualters JR. Geographic Variation in the Association between Ambient Fine Particulate Matter (PM2.5) and Term Low Birth Weight in the United States. Environ Health Perspect. 2016; 124(2): 250-5.</td>
</tr>
<tr>
<td>66</td>
<td>Hystad P, Larkin A, Rangarajan S, PURE country investigators, Yusuf S, Brauer M. Outdoor fine particulate matter air pollution and cardiovascular disease: Results from 747 communities across 21 countries in the PURE Study [Unpublished].</td>
</tr>
<tr>
<td>75</td>
<td>Kloo I, Melly SJ, Ridgway WL, Coull BA, Schwartz J. Using new satellite based exposure methods to study the association between pregnancy PM2.5 exposure, premature birth and birth weight in Massachusetts. Environ Health. 2012; 11(1).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>Citation</th>
</tr>
</thead>
</table>
The following figures display risk curves for each outcome. The dashed line depicts the GBD2017 IER including active smoking data, the dotted line depicts the GBD2019 IER including active smoking data and updates to the AS and SHS exposure incorporation, and the solid line depicts the GBD2019 MR-BRT curve without the inclusion of active smoking data. The grey shaded areas represent the 95% CI. The red box represents the TMREL area of the curve. On each page, the first figure depicts the typical range of outdoor exposure, whereas the second plot includes higher levels typical of household air pollution exposure.

Each point or number represents one study effect size. Each is plotted at the 95th percentile of the exposure distribution (OAP), the expected level of exposure for individual using solid fuel (HAP), or the expected level of exposure for individuals experiencing SHS. The relative risk is plotted relative to the predicted relative risk at the 5th percentile of exposure distribution (OAP), the expected (ambient only) level of exposure for individuals not using solid fuel (HAP), or the expected (ambient only) level of exposure for individuals not exposed to SHS. For example, a study predicting a relative risk of 1.5 for an exposure range of 10 to 20 would be plotted at (20, MRBRT(10)*1.5). Arrows represent studies that would have been outside the range of the plot, but have been moved to include on the figure.
Low birthweight and short gestation mediation analysis
The outcomes of low birthweight and short gestation include mortality due to diarrheal diseases, lower respiratory infections, upper respiratory infections, otitis media, meningitis, encephalitis, neonatal preterm birth, neonatal encephalopathy due to birth asphyxia and trauma, neonatal sepsis
and other neonatal infections, hemolytic disease and other neonatal jaundice, and other neonatal disorders. We also calculate attributable YLDs for neonatal preterm birth. These are specific to ages 0-6 days and 7-27 days. US Environmental Protection Agency

In partnership with Dr. Rakesh Ghosh at the University of California, San Francisco, we conducted systematic review of all cohort, case-control, or randomized-controlled trial studies of ambient PM2.5 pollution or household air pollution and birthweight or gestational age outcomes. Outcomes measured included continuous birthweight (bw), continuous gestational age (ga), low birthweight (LBW) (<2500 g), preterm birth (PTB) (<37 weeks), and very preterm birth (VPTB) (<32 weeks). We included any papers published until March 31, 2018.

The following plots depict forest and funnel plots for studies of OAP and birthweight low birthweight and preterm birth. Note that these plots do not capture the exposure level of these studies but the linear risk or difference in birthweight per 10-unit increase in PM2.5 exposure.
For studies of household air pollution we used the same strategy described above to map them to PM2.5 exposure values.
Because birthweight and gestational age are modeled using a continuous joint distribution for the GBD, we were interested in how those distributions changed under the influence of PM2.5 pollution. We therefore estimated the continuous shift in birthweight (bw, in grams) and gestational age (ga, in weeks) at a given PM2.5 exposure level.

When available we used estimates of continuous shift in bw or ga directly from each study. When that was not available we used the published OR/RR/HR for LBW, PTB, or VPTB and the following strategy:

1. Extract the OR/RR/HR from the study.
2. Select the GBD 2017 estimated bw-ga joint distribution for the study location and year.
3. Calculate the number of grams or weeks required to shift the distribution such that the proportion of births under the specified threshold (P) is reduced by the study effect size to a counterfactual level (P\text{cf}).
4. Save the resulting shift and 95% CI as the continuous effect.

We then fit a MR-BRT spline to these studies, where the difference in the value of the model at the upper concentration (X) and the value of the model at the counterfactual concentration (X\text{cf}) is equal to the published or calculated shift in bw or ga. We fit the same model and priors as the non-mediated outcomes (with the exception of COPD), except, because the change in birthweight and gestational age was expected to be negative, the shape constraints were monotonically decreasing and concave up.

\[MRBRT(X) - MRBRT(X_{cf}) \sim Shift \]

The following figures depict the MR-BRT curves for shift in grams (bw) and weeks (ga).
Once we had curves of estimated shifts across the exposure range, we predicted the shift in both birthweight and gestational age for total female particulate matter pollution exposure in each location and year. Because the epidemiological studies mutually controlled for birthweight and gestational age, we assumed these shifts are independent. We then shifted the observed
distributions to reflect the expected bwga distribution in the absence of particulate matter pollution. These shifted distributions were used as the counterfactual in the PAF calculation equation to calculate the burden attributable to PM2.5 pollution.

To calculate PAFs, the distribution is divided into 56 bw-ga categories, each with a unique RR. Let p_i be the observed proportion of babies in category, i and p'_i be the counterfactual proportion of babies in category, i if there were no particulate matter pollution.

$$PAF_{PM} = \frac{\sum_{i \in bwga \; category} RR_i p_i - \sum_{i \in bwga \; category} RR_i p'_i}{\sum_{i \in bwga} RR_i p_i}$$

We proportionately split this PAF to ambient and hap based on exposure as is described below. One important assumption to note is that we are assuming the shift in bw and ga is linear across the bwga distribution.

For lower respiratory infections we have directly estimated PAFs attributable to PM$_{2.5}$ in addition to those mediated through birthweight and gestational age. We would expect that some of the directly estimated PAFs are mediated through bw and ga. Additionally, the directly estimated PAF is based on a summary of relative risks for all children under 5 years, so there is a chance that the mediated PAF, which is more finely resolved, could be greater. To avoid double-counting, for these two age groups (0-6 days and 0-27 days), we take the max of the two PAF estimates. If the directly estimated PAF is greater than the bw-ga mediated PAF, we take the direct estimate, and if the mediated PAF is greater, we take the mediated.

PTB incidence and mortality are both outcomes measured in the GBD. 100% of the burden for this cause is attributable to short gestation. To calculate the percent attributable to particulate matter pollution we estimated the percent of babies born at less than 37 weeks (p_{ptb}) and the percent of babies that would have been born at less than 37 weeks in the counterfactual scenario of no particulate matter pollution (p'_{ptb}).

$$PAF_{ptb,pm} = 1 - \frac{p'_{ptb}}{p_{ptb}}$$

Limitations

Although in GBD 2019 we have not used active smoking data to estimate the risk curves, we are still using an integrated exposure response approach because we are integrating relative risk estimates across various exposure sources: ambient, SHS, and HAP. The use of various sources to construct a risk curve with PM$_{2.5}$ as the exposure indicator assumes equitoxicity of particles, despite evidence suggesting differences in health impact by PM source, size, and chemical composition. However, in the absence of consistent and robust evidence of differential toxicity by source and sufficient estimates of source or composition-specific exposure-response relationships, integrating across OAP, SHS, and HAP studies is the approach most consistent with the current evidence, as reviewed by US EPA and WHO.

Proportional PAF approach

Prior to GBD 2017, relative risks for both exposures were obtained from the IER as a function of exposure and relative to the same TMREL. In reality, were a country to reduce only one of these risk factors, the other would remain. We did not consider the joint effects of particulate matter from outdoor exposure and burning solid fuels for cooking. For GBD 2017 we developed a new approach to use the IER for obtaining PAFs for both OAP and HAP:
Let E_{OAP} be the ambient PM2.5 exposure level and E_{HAP} be the excess exposure for those who use solid fuel for cooking. Let P_{HAP} be the proportion of the population using solid fuel for cooking. We calculated PAFs at each $0.1^\circ \times 0.1^\circ$ grid cell. We assumed that the distribution of those using solid fuel for cooking (HAP) was equivalent across all grid cells of the GBD location.

For the proportion of the population not exposed to HAP the relative risk was:

$$RR_{\text{OAP}} = \frac{MRBRT(z = E_{\text{OAP}})}{MRBRT(z = TMREL)},$$

And for those exposed to HAP, the relative risk was

$$RR_{\text{HAP}} = \frac{MRBRT(z = E_{\text{OAP}} + E_{\text{HAP}})}{MRBRT(z = TMREL)}.$$

We then calculate a population level RR and PAF for all particulate matter exposure.

$$RR_{\text{PM}} = RR_{\text{OAP}}(1 - P_{\text{HAP}}) + RR_{\text{HAP}}P_{\text{HAP}}$$

$$PAF_{\text{PM}} = \frac{RR_{\text{PM}} - 1}{RR_{\text{PM}}}$$

We population weight the grid-cell level particulate matter PAFs to get a country level PAF, and finally, we split this PAF based on the average exposure to each OAP and HAP.

$$PAF_{\text{OAP}} = \frac{E_{\text{OAP}}}{E_{\text{OAP}} + E_{\text{HAP}}^*} PAF_{\text{PM}}, \text{ and } PAF_{\text{HAP}} = \frac{E_{\text{HAP}}^*}{E_{\text{OAP}} + E_{\text{HAP}}^*} PAF_{\text{PM}}.$$

With this strategy, $PAF_{\text{PM}} = PAF_{\text{HAP}} + PAF_{\text{OAP}}$, and no burden is counted twice.

References

4. Shaddick, G., Thomas, M. L., Mudu, P., Ruggeri, G. and Gumy, S. Half the world’s population are exposed to increasing air pollution. Accepted by Nature Climate and Atmospheric Science.

Available at: http://www.euro.who.int/__data/assets/pdf_file/0004/193108/REVIHAAP-
Final-technical-report-final-version.pdf?ua=1